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Synchronization of mutually coupled chaotic systems

D. Y. Tang and N. R. Heckenberg
Physics Department, The University of Queensland, Brisbane, Qld 4072, Australia

~Received 3 December 1996!

We report on the experimental observation of both basic frequency locking synchronization and chaos
synchronization between two mutually coupled chaotic subsystems. We show that these two kinds of synchro-
nization are two stages of interaction between coupled chaotic systems. In particular the chaos synchronization
could be understood as a state of phase locking between coupled chaotic oscillations.
@S1063-651X~97!03806-3#

PACS number~s!: 05.45.1b, 05.40.1j, 42.65.Sf, 42.60.Mi
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I. INTRODUCTION

Synchronization between periodic oscillations of mutua
coupled dynamical systems is a well-known phenomen
Generally, when the oscillation frequencies of two coup
periodic systems are within a certain range called the lock
range, the frequencies will automatically lock to a mutu
value and consequently both systems oscillate with the s
frequency. After frequency locking between their oscil
tions, we say they are synchronized. Since the oscillation
a periodic system is regular, the effect of synchronizat
between them is clear and unique.

The dynamics of a system can also be chaotic. Rece
there has been great interest in synchronization between
otic systems@1–11#. In contrast to the oscillation of a per
odic system, the oscillation of a chaotic system is dyna
cally intrinsically unstable: Its oscillation depend
sensitively on the initial conditions and varies with time. D
to this special character of chaotic systems, there have de
oped different versions of the definition of synchronizati
between chaotic oscillations. Mostly, synchronization of c
otic oscillations is defined as the complete coincidence of
trajectories of the coupled individual chaotic systems~sub-
systems! in the phase space@5#. According to this definition,
under the synchronization the dynamics of two coupled s
tems ~subsystems! become exactly the same, even thou
without coupling they are not dynamically identical. Th
kind of synchronization was called ‘‘chaos synchronizatio
and has been observed in coupled chaotic systems@2–10#.

Another definition takes account of the behavior of so
chaotic attractors that in their power spectrum a basic
quency can be distinguished and defines synchronizatio
chaotic oscillations as meaning merely that their basic
quencies are locked together@1#. We refer to this synchroni-
zation as the ‘‘basic frequency locking synchronization.’’
chaotic attractor whose power spectrum possesses this
havior is called a ‘‘phase coherent attractor’’@12–14#. A
major property of these chaotic attractors is that their cha
behavior results mainly from chaotic amplitude modulati
and the contribution from the chaotic phase modulation
very weak. Consequently, there exists a predominant
quency in the chaotic oscillation of these attractors. A ch
acteristic of this synchronization is that the average osc
tion frequencies of the coupled chaotic systems
entrained, while the amplitudes of the oscillations rem
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chaotic and independent. An advantage of this definition
that, like the synchronization between periodic systems,
mechanism of synchronization is clear. Rosenblum, P
ovsky, and Kurths have reported an observation of ‘‘phas
synchronization between coupled chaotic systems@15#.
However, the synchronization they referred to seems to
exactly the basic frequency locking synchronization. Stric
speaking, despite the fact that the phase fluctuation of
oscillation of a phase coherent strange attractor is very sm
under the basic frequency locking, the instantaneous ph
of these coupled systems are not locked.

In this paper we report on an experimental observation
both basic frequency locking synchronization and chaos s
chronization between two mutually coupled chaotic su
systems. We show that, like coupled periodic system
coupled chaotic systems have a tendency to engage in m
synchronization in the form of basic frequency locking
chaotic phase locking. Our experimental results demonst
that the two observed synchronizations are in fact the
natural stages of interaction between coupled chaotic
tems. In particular the chaos synchronization between c
otic systems could be physically understood as a resul
phase locking between coupled chaotic oscillations.

II. EXPERIMENT AND RESULTS

Our experimental system is an optically pumped NH3 bi-
directional ring laser. Details of the configuration of the las
were reported in@16#. This laser was chosen for the prese
experimental study because it lases in two modes simu
neously and these two modes are mutually coupled. O
mode field of the laser propagates in the same direction
the pump laser beam and is called the forward mode;
other mode field propagates against the direction of the pu
laser beam and is called the backward mode. Due to
optical pumping of the laser that selectively excites N3
molecules with the same longitudinal velocity, the ga
bandwidth of the laser is very narrow, limited by homog
neous broadening. Both modes of the laser share the s
population inversion, while, because of the Doppler eff
resulting from the motion of the excited molecules, the
fective gain frequency of each mode is different. The f
quency difference between them is determined by the pu
frequency detuning relative to the NH3 absorption line cen-
ter. This relation between the two laser modes results i
6618 © 1997 The American Physical Society
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FIG. 1. Typical chaotic dynamics of the modes without coupling:~a! mode intensity evolution of a Lorenz-like spiral chaos,~b! mode
intensity evolution of a period-doubling chaos,~c! Fourier power spectrum calculated from data shown in~a!, and ~d! Fourier power
spectrum calculated from data shown in~b!.
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strong cross saturation between their gains. Another coup
mechanism between the two modes is the backscatterin
sulting from the dynamical spatial population inversion gr
ing formed by the two counterpropagating mode fields, a
this coupling causes further a strong phase-dependent i
action between them. Because these two mode fields pr
gate in opposite directions, they separate on the out-coup
mirror of the laser, which allows the dynamics of ea
coupled mode to be easily detected separately, even tho
they are mutually coupled in the laser cavity.

Depending on the pump laser frequency setting, this la
can also operate single mode in either of these two mode
was found previously that under suitable conditions,
single-mode operation of the laser can exhibit different kin
of deterministic chaos, such as Lorenz-like spiral chaos@17#,
period-doubling chaos@18#, and type-III intermittent chaos
@19#. The single-mode chaotic dynamics was found to be
intrinsic behavior of the laser and, as we will show below,
the parameter range producing single-mode chaos, when
laser operates in the multimode emission, each mode
exhibit chaotic dynamics as well. As examples of the sing
mode chaos of the laser, we show in Fig. 1 a typical Lorenz-
like spiral chaos and a period-doubling chaos observed in
laser together with their Fourier power spectra. Studies of
dynamics of these forms of single-mode laser chaos h
revealed the following behaviors. First, as can be seen in
spectra shown, there exist distinguishable sharp spikes in
power spectrum of the single-mode laser chaos. These sp
are superposed on the broadband background of the s
trum. Experimentally, it was further found that these spik
are more significant at the onset of each kind of chaos an
the chaos of the mode increased, their width increases
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finally they disappear. This behavior of the single-mode la
chaos shows that when the mode dynamics is not very c
otic, its chaotic attractor is indeed a phase coherent attra
Second, the position of the fundamental spike in the sp
trum depends measurably on the concrete laser condit
such as the gain and the laser cavity detuning. This indic
that the basic frequency of the chaotic mode intensity os
lation changes with the mode conditions. Third, because
the longitudinal optical pumping of the laser that breaks
symmetry between the forward- and the backward-mo
emission of the laser, even with zero pump laser freque
detuning relative to the NH3 gas absorption line center, th
gains for the forward and the backward emissions are not
same. As demonstrated by Heppneret al. @20#, in the steady-
state operation of the laser, the ac Stark splitting in the f
ward gain is more significant than in the backward gain. T
asymmetry between the two modes leads to a significant
ference in their detailed chaotic dynamics. When the pu
laser frequency is detuned from the NH3 gas absorption line
center, a further asymmetry in the laser conditions betw
these two modes results.

In the present experiment, we are interested in the s
chronization between the chaotic dynamics of two mutua
coupled chaotic systems. Regardless of the concrete coup
mechanism between the two modes of our laser, one ca
principle view each mode of the laser as a subsystem
regard the dynamics of the whole laser as results of the m
interaction. Because in the case of our laser we can ob
and measure the chaotic dynamics of each individual m
with and without coupling simply by changing pump las
frequency detuning relative to the NH3 gas absorption line
center, this treatment is also a practical way of understand
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the complex dynamics of the laser.
Experimentally, we used a separate Schottky-barrier

ode to simultaneously detect the intensity evolution of e
of the laser modes and studied their dynamics under diffe
conditions, e.g., different pump intensity, gas pressure,
cavity loss. Since in our experiment with a properly selec
cavity detuning changing the pump frequency detuning
effectively equivalent to changing the coupling strength
tween the two modes, the pump frequency detuning rela
to the NH3 gas absorption line center has been chosen as
control parameter.

Generally, it is observed that when the chaotic modes
coupled, the intensity evolution of each mode becomes v
complicated. The chaotic dynamics of each mode under c
pling is very different from that of the single-mode chao
dynamics of the laser; particularly, normally no obvious sy
chronization between the modes was observed. This be
ior of the coupled chaotic modes is presumably a reflec
of the high-dimensional character of the system. Howev
we find that under certain conditions, even though the c
pling strength between the modes is not strong, the inten
dynamics of the coupled modes can spontaneously bec
synchronized. Two kinds of synchronizations between
chaotic mode intensity dynamics were observed in our
periment. As an example, one of these synchronization
shown in Fig. 2, which can be classified as the basic
quency locking synchronization. From Fig. 2 it is clear th
the intensity evolution of both modes is chaotic. Analyzi
the intensity evolution of each mode, it was further fou
that their chaotic dynamics mainly retains the characteris
of the single-mode chaotic dynamics of the laser. Beca
the conditions for each mode are not all the same, their e
chaotic mode intensity evolutions are different. But the c
otic intensity pulsation rate of each mode is not independ
despite of the fact that the dynamics of each mode is cha
and their detailed evolutions are different. Another sign
cant feature of the mode intensity variation shown is that
individual intensity pulsations of the two modes are alwa
out of step. Under different conditions, a kind of in-st
chaotic mode intensity pulsation relation between the t
modes was also observed@21#. The out-of-step pulsation o

FIG. 2. Mode intensity evolution of each of the two coupl
modes under basic frequency locking synchronization:~a! intensity
evolution of the forward mode and~b! intensity evolution of the
backward mode. The pump intensity is 2.4 W/cm2, the NH3 gas
pressure is 5 Pa, and the output mirror mesh constant is 51mm.
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coupled periodic systems has been observed and intens
investigated before@22–24#. It was identified as a coopera
tive self-organization of coupled systems. In contrast to
case of coupled periodic systems, our experimental res
demonstrate that even in the case of coupled chaotic syst
under the interaction between them their chaotic dynam
can be cooperatively self-organized.

To further show that the basic oscillation frequency of t
chaotic intensity evolutions shown in Fig. 2 are frequen
locked, we have calculated their intensity power spectra
shown them in Fig. 3. It is easy to identify the fundamen
sharp spike and its harmonics in the power spectra show
Fig. 3. These sharp spikes superposed on the broad
background and the position of the fundamental spike gi
the basic mode chaotic intensity pulsation frequency. As
pected, the positions of the fundamental spikes of these
modes are exactly the same, indicating that they are actu
average frequency locked. Apart from the positions of
line spikes in the spectrum, other structures of the two po
spectra are totally different. This shows again from a diff
ent aspect, that under the basic frequency locking, the
tailed dynamical behavior of the synchronized chaotic s
tems could be very different. We note that generally un
the interaction between the modes, the phase coherenc
the uncoupled attractors is destroyed. Only under the s
chronization is this behavior of the attractors retained.

Although under this basic frequency locking synchroniz

FIG. 3. Fourier power spectra calculated from the data show
Fig. 2: ~a! corresponding to the forward-mode intensity evoluti
of Fig. 2~a! and ~b! corresponding to the backward-mode intens
evolution of Fig. 2~b!.
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tion the detailed chaotic mode intensity evolutions of ea
mode are different, the envelopes of these two mode in
sity pulsations do show some similarities, as could be id
tified in Fig. 2. This rough similarity shows that apart fro
the basic frequency locking between their chaotic osci
tions, there exists also a tendency of approaching chaos
chronization between their chaotic dynamics. Based on
experimental result, we postulate that the basic freque
locking could be a primary result of the interaction betwe
coupled chaotic systems, and its realization requires fe
conditions. When more conditions are fulfilled, further ‘‘sy
chronization’’ between the chaotic intensity dynamics of t
coupled modes could be achieved. To this end we have
perimentally investigated the possibility of chaos synchro
zation between the chaotic intensity dynamics of the mo
under a wide parameter range. We find actually that un
increased cavity loss, this kind of chaos synchronization
be observed in the laser as shown in Fig. 4. Under this s
chronization, the chaotic intensity variations of the tw
modes are always exactly identical, even though, as m
tioned above, in our laser the dynamical behaviors of the
modes are not normally identical.

III. RELATION BETWEEN THE TWO
SYNCHRONIZATIONS

From our experimental results, it seems that both the b
frequency locking synchronization and the chaos synchr
zation between coupled chaotic systems are two natura
sults of chaotic interaction between them. To better und
stand the interaction between coupled chaotic systems
especially to find out the relationship between these
kinds of synchronization, we examine below the behavior
these two synchronized states. In studying the behavior
period-doubling chaos chaotic signal, Farmer and his
workers noticed that a chaotic evolution could be conside
as consisting of two parts—the chaotic amplitude modulat
and chaotic phase modulation—and introduced the idea
understanding the behavior of a chaotic system in anal
with that of an oscillator@12,13#. Based on Gabor’s phas

FIG. 4. Mode intensity evolution of each of the two coupl
modes under chaos synchronization:~a! intensity evolution of the
forward mode and~b! intensity evolution of the backward mode
The pump intensity is 3.5 W/cm2, the NH3 gas pressure is 3.5 Pa
and the output mirror mesh constant is 102mm.
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definition for an arbitrary signal@25#, Rosenblum, Pikovsky,
and Kurths have defined the phase of a chaotic signal@15#.
Following Gabor’s definition, the analytic signalc(t) is a
complex function of time defined as

c~ t !5S~ t !1 iS̃~ t !5A~ t !eif~ t !, ~1!

whereS(t) is a real function of time and the functionS̃(t) is
the Hilbert transform ofS(t),

S̃~ t !5
1

p
PE

2`

` S~t!

t2t
dt, ~2!

where P means that the integral is taken in the sense of
Cauchy principal value. Equation~1! uniquely defines the
instantaneous amplitudeA(t) and phasef(t) of an arbitrary
signal s(t). Although from this definition, if an arbitrary
chaotic signals(t) is known, by using the Hilbert transfor
mation ~2!, one can always work out its instantaneous a
plitude A(t) and instantaneous phasef(t); however, di-
rectly applying this definition to a completely chaotic sign
is not very useful because the physical meaning of this
culated phase is unclear. As mentioned above, for phase
herent chaotic attractors, one can identify a basic freque
in their power spectrum. This frequency provides a uniq
reference frequency that can be used to define the phas
their chaotic variation. Therefore, for these chaotic osci
tions one can write their instantaneous phase variation in
form

f~ t !5v0t1w~ t !, ~3!

wherev0 is the basic frequency andw(t) can be defined as
the chaotic phase modulation of these signals. The phys
meaning of this defined chaotic phase is clear. While
basic frequency is the average pulsation frequency of a c
otic oscillation, the phasew(t) is then the instantaneou
phase modulation on the phase evolution resulting from
basic frequency. This phase modulation is due to the cha
behavior of a chaotic system, and because of this ph
modulation the instantaneous frequency of a chaotic sys
varies with time.

With the help of the above definition of chaotic phase,
have calculated the associated chaotic phase evolutio
each coupled chaotic system in the synchronized states.
ures 5 and 6 show these calculated results. Figure 5~a! shows
the calculated phase evolutions of each of the coupled c
otic systems under the basic frequency locking synchron
tion shown in Fig. 2. Figure 6~a! shows the calculated phas
evolutions of each of the two coupled chaotic systems un
the chaos synchronization shown in Fig. 4. These phase
lutions show the common characteristic that there exist
big slope between the total phase evolution and the time a
indicating that there exits a big average frequency in
phase evolutions. In both cases of synchronization the a
age frequency of each coupled systems is the same, sho
that they are in an average frequency locked state. Th
exist also small phase modulations around this average p
slope. While in the case of chaos synchronization, the ins
taneous small phase modulations of each coupled cha
system are the same, the instantaneous small phase mo
tions of each coupled chaotic systems in the basic freque
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locked case are clearly different. We checked that the a
age slope shown in the phase evolutions shown in Figs.~a!
and 6~a! is the average oscillation frequency of each of t
coupled chaotic systems.

Figures 5~b! and 6~b! show the phase evolution of eac
coupled system after subtraction of the phase change re
sented by the average phase slope. According to Eq.~3!, this
is the chaotic phase modulation of each of the coupled c
otic systems. This chaotic phase modulation of each sys
exhibits a clear similarity to the corresponding chaotic a
plitude dynamics of the system. The instantaneous cha
phase modulations of the two coupled systems shown in
2 show also an out-of-step phase variation. We see in
5~b! that although the chaotic phase modulation of each c
otic system is small, the difference between the instan
neous chaotic phase modulations of the systems is not
stant, showing that they are not in a phase locked state.
experimental result negates the existence of the ‘‘ph
locked state’’ supposed by Rosenblum, Pikovsky, and Ku
@15#. In contrast, Fig. 6~b! shows that within the experimen
tal error range, the instantaneous chaotic phase modula
of the two coupled systems shown in Fig. 4 are the sa
showing that they are actually in a chaotic phase loc
state.

FIG. 5. Phase evolution associated with the chaotic dynamic
each of the coupled subsystems under basic frequency locking
chronization: ~a! total phase evolution and~b! phase evolution
after suppressing the phase change represented by the av
slope. The solid line corresponds to the chaotic variation showin
Fig. 2~b! and the dotted line corresponds to the chaotic variati
shown in Fig. 2~a!.
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Comparing the phase variations shown in Figs. 5 and
the relationship between these two synchronized cha
states becomes clear. The chaos synchronized state is in
a chaotic phase locked state. We see that by regarding
behavior of a chaotic system as a chaotic oscillator, the
teraction between two coupled chaotic systems could be
understood. As a universal behavior of coupled oscillato
when the basic oscillation frequency of coupled oscillat
are within the locking range, their basic frequencies will lo
together. A difference between the coupled periodic osci
tor and the coupled chaotic oscillator is that in the case of
periodic oscillator, the phase of oscillations is intrinsica
stable, so there is no difference between the frequency lo
ing and phase locking of coupled periodic oscillators, wh
in the case of the chaotic oscillator, because the phase o
oscillations is intrinsically unstable, frequency locking is n
longer equal to phase locking. In any case, we can see
the basic frequency locking and phase locking are two
ferent stages of the same interaction between coupled ch
systems.

IV. CONCLUSION

In conclusion, we have experimentally observed both
sic frequency locking synchronization and chaos synchro

of
n-

age
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s

FIG. 6. Phase evolution associated with the chaotic dynamic
each of the coupled subsystems under chaos synchronization:~a!
total phase evolution and~b! phase evolution after suppressing th
phase change represented by the average slope. The solid line
responds to the chaotic variation shown in Fig. 5~a! and the dotted
line corresponds to the chaotic variations shown in Fig. 5~b!.
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zation between the chaotic intensity dynamics of two mu
ally coupled laser modes. We found that the basic freque
locking synchronization between the chaotic intensity d
namics of the two coupled modes can be easily achieved
comparison with the chaos synchronization case, it ha
broad parameter range. Using the definition of phase o
M

s

zu

an
-
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a
a

chaotic signal proposed by Rosenblum, Pikovsky, a
Kurths, we have calculated the chaotic phase evolution
bedded in the chaotic dynamics of each coupled laser m
Our experimental results show that the basic freque
locked chaotic state is not a chaotic phase locked state,
the chaos synchronized state is a chaotic phase locked s
ev.
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