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Synchronization of mutually coupled chaotic systems

D. Y. Tang and N. R. Heckenberg
Physics Department, The University of Queensland, Brisbane, Qld 4072, Australia
(Received 3 December 1996

We report on the experimental observation of both basic frequency locking synchronization and chaos
synchronization between two mutually coupled chaotic subsystems. We show that these two kinds of synchro-
nization are two stages of interaction between coupled chaotic systems. In particular the chaos synchronization
could be wunderstood as a state of phase locking between coupled chaotic oscillations.
[S1063-651%97)03806-3

PACS numbg(s): 05.45:+b, 05.40+j, 42.65.Sf, 42.60.Mi

I. INTRODUCTION chaotic and independent. An advantage of this definition is
that, like the synchronization between periodic systems, the
Synchronization between periodic oscillations of mutuallymechanism of synchronization is clear. Rosenblum, Pik-
coupled dynamical systems is a well-known phenomenonovsky, and Kurths have reported an observation of “phase”
Generally, when the oscillation frequencies of two coupledsynchronization between coupled chaotic systefS].
periodic systems are within a certain range called the lockingiowever, the synchronization they referred to seems to be
range, the frequencies will automatically lock to a mutualexactly the basic frequency locking synchronization. Strictly
value and consequently both systems oscillate with the sanfPeaking, despite the fact that the phase fluctuation of the
frequency. After frequency locking between their oscilla- oscillation of a phase coherent strange attractor is very small,
tions, we say they are synchronized. Since the oscillation ofinder the basic frequency locking, the instantaneous phases
a periodic system is regular, the effect of synchronizatiorPf these coupled systems are not locked.
between them is clear and unique. In this paper we report on an experimental observation of
The dynamics of a system can also be chaotic. Recentlypoth basic frequency locking synchronization and chaos syn-
there has been great interest in synchronization between ch@ronization between two mutually coupled chaotic sub-
otic systemg1—11]. In contrast to the oscillation of a peri- Systems. We show that, like coupled periodic systems,
odic system, the oscillation of a chaotic system is dynami<£oupled chaotic systems have a tendency to engage in mutual
cally intrinsically unstable: Its oscillation depends Synchronization in the form of basic frequency locking or
sensitively on the initial conditions and varies with time. Due chaotic phase locking. Our experimental results demonstrate
to this special character of chaotic systems, there have devdfat the two observed synchronizations are in fact the two
oped different versions of the definition of synchronizationnatural stages of interaction between coupled chaotic sys-
between chaotic oscillations. Mostly, synchronization of cha{e€ms. In particular the chaos synchronization between cha-
otic oscillations is defined as the complete coincidence of th&tic systems could be physically understood as a result of
trajectories of the coupled individual chaotic systefash-  Phase locking between coupled chaotic oscillations.
systemgin the phase spadé&]. According to this definition,
under the synchronization the dynamics of two coupled sys- Il EXPERIMENT AND RESULTS
tems (subsystemssbecome exactly the same, even though
without coupling they are not dynamically identical. This  Our experimental system is an optically pumpedNiit
kind of synchronization was called “chaos synchronization” directional ring laser. Details of the configuration of the laser
and has been observed in coupled chaotic sysf@msd]. were reported if16]. This laser was chosen for the present
Another definition takes account of the behavior of someexperimental study because it lases in two modes simulta-
chaotic attractors that in their power spectrum a basic freneously and these two modes are mutually coupled. One
qguency can be distinguished and defines synchronization @hode field of the laser propagates in the same direction as
chaotic oscillations as meaning merely that their basic frethe pump laser beam and is called the forward mode; the
guencies are locked togethdr. We refer to this synchroni- other mode field propagates against the direction of the pump
zation as the “basic frequency locking synchronization.” A laser beam and is called the backward mode. Due to the
chaotic attractor whose power spectrum possesses this beptical pumping of the laser that selectively excites ;NH
havior is called a “phase coherent attractoff2-14. A molecules with the same longitudinal velocity, the gain
major property of these chaotic attractors is that their chaotibandwidth of the laser is very narrow, limited by homoge-
behavior results mainly from chaotic amplitude modulationneous broadening. Both modes of the laser share the same
and the contribution from the chaotic phase modulation igpopulation inversion, while, because of the Doppler effect
very weak. Consequently, there exists a predominant freresulting from the motion of the excited molecules, the ef-
quency in the chaotic oscillation of these attractors. A charfective gain frequency of each mode is different. The fre-
acteristic of this synchronization is that the average oscillaguency difference between them is determined by the pump
tion frequencies of the coupled chaotic systems ardrequency detuning relative to the NHbsorption line cen-
entrained, while the amplitudes of the oscillations remainter. This relation between the two laser modes results in a
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FIG. 1. Typical chaotic dynamics of the modes without couplinga) mode intensity evolution of a Lorenz-like spiral cha@®, mode
intensity evolution of a period-doubling chadg) Fourier power spectrum calculated from data showr(an and (d) Fourier power
spectrum calculated from data shown().

strong cross saturation between their gains. Another couplinfinally they disappear. This behavior of the single-mode laser
mechanism between the two modes is the backscattering rehaos shows that when the mode dynamics is not very cha-
sulting from the dynamical spatial population inversion grat-otic, its chaotic attractor is indeed a phase coherent attractor.
ing formed by the two counterpropagating mode fields, andecond, the position of the fundamental spike in the spec-
this coupling causes further a strong phase-dependent inteirum depends measurably on the concrete laser conditions
action between them. Because these two mode fields propatich as the gain and the laser cavity detuning. This indicates
gate in opposite directions, they separate on the out-couplintpat the basic frequency of the chaotic mode intensity oscil-
mirror of the laser, which allows the dynamics of eachlation changes with the mode conditions. Third, because of
coupled mode to be easily detected separately, even thoughe longitudinal optical pumping of the laser that breaks the
they are mutually coupled in the laser cavity. symmetry between the forward- and the backward-mode
Depending on the pump laser frequency setting, this lasegmission of the laser, even with zero pump laser frequency
can also operate single mode in either of these two modes. ttetuning relative to the Nfigas absorption line center, the
was found previously that under suitable conditions, thegains for the forward and the backward emissions are not the
single-mode operation of the laser can exhibit different kindssame. As demonstrated by Heppeéal.[20], in the steady-
of deterministic chaos, such as Lorenz-like spiral cHdd$, state operation of the laser, the ac Stark splitting in the for-
period-doubling chao§18], and type-Ill intermittent chaos ward gain is more significant than in the backward gain. This
[19]. The single-mode chaotic dynamics was found to be amsymmetry between the two modes leads to a significant dif-
intrinsic behavior of the laser and, as we will show below, inference in their detailed chaotic dynamics. When the pump
the parameter range producing single-mode chaos, when thaser frequency is detuned from the Bas absorption line
laser operates in the multimode emission, each mode cagenter, a further asymmetry in the laser conditions between
exhibit chaotic dynamics as well. As examples of the singlethese two modes results.
mode chaos of the laser, we show in Flga typical Lorenz- In the present experiment, we are interested in the syn-
like spiral chaos and a period-doubling chaos observed in thehronization between the chaotic dynamics of two mutually
laser together with their Fourier power spectra. Studies of theoupled chaotic systems. Regardless of the concrete coupling
dynamics of these forms of single-mode laser chaos havmechanism between the two modes of our laser, one can in
revealed the following behaviors. First, as can be seen in thprinciple view each mode of the laser as a subsystem and
spectra shown, there exist distinguishable sharp spikes in thegard the dynamics of the whole laser as results of the mode
power spectrum of the single-mode laser chaos. These spikégeraction. Because in the case of our laser we can obtain
are superposed on the broadband background of the spemad measure the chaotic dynamics of each individual mode
trum. Experimentally, it was further found that these spikeswith and without coupling simply by changing pump laser
are more significant at the onset of each kind of chaos and dsequency detuning relative to the Nigas absorption line
the chaos of the mode increased, their width increases arwnter, this treatment is also a practical way of understanding
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FIG. 2. Mode intensity evolution of each of the two coupled 1
modes under basic frequency locking synchronizat{@nhintensity S+ (b)

evolution of the forward mode an() intensity evolution of the
backward mode. The pump intensity is 2.4 Wfgcrthe NH; gas
pressure is 5 Pa, and the output mirror mesh constant jsns.1

the complex dynamics of the laser.

Experimentally, we used a separate Schottky-barrier di-
ode to simultaneously detect the intensity evolution of each
of the laser modes and studied their dynamics under different
conditions, e.g., different pump intensity, gas pressure, and
cavity loss. Since in our experiment with a properly selected o ' é ' ; ' P
cavity detuning changing the pump frequency detuning is
effectively equivalent to changing the coupling strength be-
tween the two modes, the pump frequency detuning relative ) )
to the NH; gas absorption line center has been chosen as the F'C- 3: Fourier power spectra calculated from the data shown in
control parameter. Fig. 2: (a) corresponding to the forward-mode intensity evolution

Generally, it is observed that when the chaotic modes ar8f Fig. 22 and (b) corresponding to the backward-mode intensity

coupled, the intensity evolution of each mode becomes ver;?vOIlJtlon of Fig. 2b).

complicated. The chaotic dynamics of each mode under cou-

pling is very different from that of the single-mode chaotic coupled periodic systems has been observed and intensively
dynamics of the laser; particularly, normally no obvious syn-investigated befor§22—24. It was identified as a coopera-
chronization between the modes was observed. This behative self-organization of coupled systems. In contrast to the
ior of the coupled chaotic modes is presumably a reflectiortase of coupled periodic systems, our experimental results
of the high-dimensional character of the system. Howevergdemonstrate that even in the case of coupled chaotic systems,
we find that under certain conditions, even though the couunder the interaction between them their chaotic dynamics
pling strength between the modes is not strong, the intensitgan be cooperatively self-organized.

dynamics of the coupled modes can spontaneously become To further show that the basic oscillation frequency of the
synchronized. Two kinds of synchronizations between thehaotic intensity evolutions shown in Fig. 2 are frequency
chaotic mode intensity dynamics were observed in our extocked, we have calculated their intensity power spectra and
periment. As an example, one of these synchronizations ishown them in Fig. 3. It is easy to identify the fundamental
shown in Fig. 2, which can be classified as the basic fresharp spike and its harmonics in the power spectra shown in
guency locking synchronization. From Fig. 2 it is clear thatFig. 3. These sharp spikes superposed on the broadband
the intensity evolution of both modes is chaotic. Analyzingbackground and the position of the fundamental spike gives
the intensity evolution of each mode, it was further foundthe basic mode chaotic intensity pulsation frequency. As ex-
that their chaotic dynamics mainly retains the characteristicpected, the positions of the fundamental spikes of these two
of the single-mode chaotic dynamics of the laser. Becausmodes are exactly the same, indicating that they are actually
the conditions for each mode are not all the same, their exaeverage frequency locked. Apart from the positions of the
chaotic mode intensity evolutions are different. But the chadline spikes in the spectrum, other structures of the two power
otic intensity pulsation rate of each mode is not independentpectra are totally different. This shows again from a differ-
despite of the fact that the dynamics of each mode is chaotient aspect, that under the basic frequency locking, the de-
and their detailed evolutions are different. Another signifi-tailed dynamical behavior of the synchronized chaotic sys-
cant feature of the mode intensity variation shown is that théems could be very different. We note that generally under
individual intensity pulsations of the two modes are alwaysthe interaction between the modes, the phase coherence of
out of step. Under different conditions, a kind of in-stepthe uncoupled attractors is destroyed. Only under the syn-
chaotic mode intensity pulsation relation between the twcachronization is this behavior of the attractors retained.
modes was also observéal]. The out-of-step pulsation of Although under this basic frequency locking synchroniza-
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definition for an arbitrary signdR5], Rosenblum, Pikovsky,
(2) and Kurths have defined the phase of a chaotic siftfil
Following Gabor’'s definition, the analytic signai(t) is a

complex function of time defined as
MMA}\MN i, P(t)=S(t) +iS(t) = A(t)e' V), (6]

b ~
- ®) whereS(t) is a real function of time and the functi@®(t) is

the Hilbert transform of5(t),

MMA/\WJMWM}UUM g(t):%P ) S(—T)df, )

E A I . 1 . | e =7
20 40 60

Time (uS) where P means that the integral is taken in the sense of the

Cauchy principal value. Equatiofl) uniquely defines the

FIG. 4. Mode intensity evolution of each of the two coupled iNStantaneous amplitud®(t) and phasep(t) of an arbitrary
modes under chaos synchronizatiga: intensity evolution of the ~ Signal s(t). Although from this definition, if an arbitrary
forward mode andb) intensity evolution of the backward mode. chaotic signais(t) is known, by using the Hilbert transfor-
The pump intensity is 3.5 W/cinthe NH; gas pressure is 3.5 Pa, mation (2), one can always work out its instantaneous am-
and the output mirror mesh constant is 1@2. plitude A(t) and instantaneous phasi&(t); however, di-

rectly applying this definition to a completely chaotic signal

tion the detailed chaotic mode intensity evolutions of eactS not very useful because the physical meaning of this cal-
mode are different, the envelopes of these two mode interfulated phase is unclear. As mentioned above, for phase co-
sity pulsations do show some similarities, as could be idenh€rent chaotic attractors, one can identify a basic frequency
tified in Fig. 2. This rough similarity shows that apart from in their power spectrum. This frequency provides a unique
the basic frequency locking between their chaotic oscillal€ference frequency that can be used to define the phase of
tions, there exists also a tendency of approaching chaos SyH']eII’ chaotic varl_atlon._Therefore, for these chao_tlc_ 03(_:|Ila-
chronization between their chaotic dynamics. Based on thiions one can write their instantaneous phase variation in the
experimental result, we postulate that the basic frequenc@rm
locking could be a primary result of the interaction between _
coupled chaotic systems, and its realization requires fewer PO = wot+ (1), @)

conditions. When more conditions are fulfilled, further **syn- wherewy is the basic frequency ang(t) can be defined as
chronization” between the chgotlc intensity dynamics of theihe chaotic phase modulation of these signals. The physical
coupled modes could be achieved. To this end we have expeaning of this defined chaotic phase is clear. While the

per_imentally investigated Fh(_e poss_ibility of chaos synchroniyasic frequency is the average pulsation frequency of a cha-
zation between the chaotic intensity dynamics of the modesg;. oscillation, the phase(t) is then the instantaneous

under a wide parameter range. We find actually that undegpase modulation on the phase evolution resulting from the
increased cavity loss, this kind of chaos synchronization capgic frequency. This phase modulation is due to the chaotic
be observed in the laser as shown in Fig. 4. Under this synsenavior of a chaotic system, and because of this phase

chronization, the chaotic intensity variations of the two,qqylation the instantaneous frequency of a chaotic system
modes are always exactly identical, even though, as men;ysies with time.

tioned above, in our laser the dynamical behaviors of the two \yith the help of the above definition of chaotic phase, we

modes are not normally identical. have calculated the associated chaotic phase evolution of
each coupled chaotic system in the synchronized states. Fig-
Ill. RELATION BETWEEN THE TWO ures 5 and 6 show these cal_culated results. Figlaeshows
SYNCHRONIZATIONS th_e calculated phase evolu_t|ons of each of t_he coupled (_:ha-
otic systems under the basic frequency locking synchroniza-
From our experimental results, it seems that both the basiton shown in Fig. 2. Figure @) shows the calculated phase
frequency locking synchronization and the chaos synchronievolutions of each of the two coupled chaotic systems under
zation between coupled chaotic systems are two natural réhe chaos synchronization shown in Fig. 4. These phase evo-
sults of chaotic interaction between them. To better undertutions show the common characteristic that there exists a
stand the interaction between coupled chaotic systems aritig slope between the total phase evolution and the time axis,
especially to find out the relationship between these twadndicating that there exits a big average frequency in the
kinds of synchronization, we examine below the behavior ofphase evolutions. In both cases of synchronization the aver-
these two synchronized states. In studying the behavior of age frequency of each coupled systems is the same, showing
period-doubling chaos chaotic signal, Farmer and his cothat they are in an average frequency locked state. There
workers noticed that a chaotic evolution could be considereexist also small phase modulations around this average phase
as consisting of two parts—the chaotic amplitude modulatiorslope. While in the case of chaos synchronization, the instan-
and chaotic phase modulation—and introduced the idea dineous small phase modulations of each coupled chaotic
understanding the behavior of a chaotic system in analoggystem are the same, the instantaneous small phase modula-
with that of an oscillatof12,13. Based on Gabor’'s phase tions of each coupled chaotic systems in the basic frequency
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FIG. 5. Phase evolution associated with the chaotic dynamics of FIG- 6. Phase evolution associated with the chaotic dynamics of
each of the coupled subsystems under basic frequency locking sy§@ch of the coupled subsystems under chaos synchronizatian:
chronization: (a) total phase evolution anéb) phase evolution total phase evolution an@) phase evolution after suppressing the
after suppressing the phase change represented by the avera&i@se change represe_nted _by_ the average s_lope. The solid line cor-
slope. The solid line corresponds to the chaotic variation showing if€SPONdS to the chaotic variation shown in Figa)%and the dotted
Fig. 2(b) and the dotted line corresponds to the chaotic variationdin® corresponds to the chaotic variations shown in Fig).5

shown in Fig. Za) Comparing the phase variations shown in Figs. 5 and 6,

locked case are clearly different. We checked that the avethe relationship between these two synchronized chaotic
age slope shown in the phase evolutions shown in Figs. 5 states becomes clear. The chaos synchronized state is in fact
and Ga) is the average oscillation frequency of each of thea chaotic phase locked state. We see that by regarding the
coupled chaotic systems. behavior of a chaotic system as a chaotic oscillator, the in-
Figures $b) and Gb) show the phase evolution of each teraction between two coupled chaotic systems could be well
coupled system after subtraction of the phase change reprgnderstood. As a universal behavior of coupled oscillators,
sented by the average phase slope. According td®gthis  when the basic oscillation frequency of coupled oscillators
is the chaotic phase modulation of each of the coupled chagre within the locking range, their basic frequencies will lock
otic systems. This chaotic phase modulation of each systefgether. A difference between the coupled periodic oscilla-
exhibits a clear similarity to the corresponding chaotic am+ and the coupled chaotic oscillator is that in the case of the
plitude dynamics of the system. The instantaneous chaotigeriodic oscillator, the phase of oscillations is intrinsically
phase modulations of the two coupled systems shown in Figsiaple, so there is no difference between the frequency lock-
2 show also an out-of-step phase variation. We see in Figng and phase locking of coupled periodic oscillators, while
5(b) that although the chaotic phase modulation of each chap, the case of the chaotic oscillator, because the phase of the
otic system is small, the difference between the instantagscijjations is intrinsically unstable, frequency locking is no
neous chao_tlc phase modulatlon_s of the systems is not COlsnger equal to phase locking. In any case, we can see that
stant, showing that they are not in a phase locked state. Thige pasic frequency locking and phase locking are two dif-

experimental result negates the existence of the “phasgyent stages of the same interaction between coupled chaotic
locked state™ supposed by Rosenblum, Pikovsky, and Kurthgystems.

[15]. In contrast, Fig. @) shows that within the experimen-

tal error range, the instantaneous ch_aotl_c phase modulations IV. CONCLUSION

of the two coupled systems shown in Fig. 4 are the same,

showing that they are actually in a chaotic phase locked In conclusion, we have experimentally observed both ba-
state. sic frequency locking synchronization and chaos synchroni-
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zation between the chaotic intensity dynamics of two mutu-chaotic signal proposed by Rosenblum, Pikovsky, and
ally coupled laser modes. We found that the basic frequenci{urths, we have calculated the chaotic phase evolution em-
locking synchronization between the chaotic intensity dy-bedded in the chaotic dynamics of each coupled laser mode.
namics of the two coupled modes can be easily achieved. I®ur experimental results show that the basic frequency
comparison with the chaos synchronization case, it has Bbcked chaotic state is not a chaotic phase locked state, but
broad parameter range. Using the definition of phase of #he chaos synchronized state is a chaotic phase locked state.

[1] V. S. Anishchenko, T. E. Vadivasova, D. E. Postnov, and M.[14] E. F. Stone, Phys. Lett. A63 367 (1992.

A. Safonova, Int. J. Bifurcation Cha& 633(1992. [15] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev.
[2] L. Pecora and T. L. Carroll, Phys. Rev.4¥, 2374(1991). Lett. 76, 1804(1996.
[3] R. Roy and K. S. Thornburg, Jr., Phys. Rev. L& 2009  [16] Tin Win, M. Y. Li, J. T. Malos, N. R. Heckenberg, and C. O.
(1994. Weiss, Opt. Communl03 479 (1993.

[4] L. Pecoraand T. L. Carroll, Phys. Rev. Leitd, 821(1990. [17] C. O. Weiss and J. Brock, Phys. Rev. L&Y, 2804(1986).
[5] L. Kocarev and U. Parlitz, Phys. Rev. Lef6, 1816(1996. [18] D. Y. Tang, M. Y. Li, J. T. Malos, N. R. Heckenberg, and C.
[6] R. He and P. G. Vaidya, Phys. Rev.48, 7383(1992. O. Weiss, Phys. Rev. A2, 717 (1995.

[7] A. A. Alexeyev and V. D. Shalfeev, Int. J. Bifurcation Chaos [19] D. Y. Tang, J. Pujol, and C. O. Weiss, Phys. Rev44 R35
5, 551(1995. (1991

[8] C. W. Wu and L. O. Chu, Int. J. Bifurcation Chads 979 [20] J. Heppner, C. O. Weiss, U. Hbner, and G. Schinn, IEEE J.

(19949.
. - Quantum ElectronQE-16, 392 (1980.
[9] T. Sugawara, M. Tachikawa, T. Tsnkamoto, and T. Shlmlzu,[21] D. Y. Tang and N. R. Heckenberg, Opt. Commua&L, 89

Phys. Rev. Lett72, 3502(1994).

[10] H. G. Winful and L. Rahman, Phys. Rev. Let5, 1575 (1996,' . .

(1990. [22] K. Wiesenfeld, C. Bracikowski, G. James, and R. Roy, Phys.
[11] K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Létt, 65 Rev. Lett.65, 1749(1990.

(1993. [23] I. B. Schwartz and K. Y. Tsang, Phys. Rev. L&®8, 2797
[12] J. D. Farmer, Phys. Rev. Le#t7, 179 (1982). (1994).

[13] J. Crutchfield, D. Farmer, N. Packard, R. Shaw, G. Jones, ant4l S. Nichols and K. Wiesenfeld, Phys. Rev.45, 8430(1992.
R. J. Donnelly, Phys. LetZ6A, 1 (1980. [25] D. Gabor, J. IEE Londo®3, 429(1946.



